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We consider a bistable Fokker-Planck system with a known stationary distribu- 
tion and a small nonpotential part in the drift force. We perform a perturbation 
calculation of its Kramers time, r K, and compare it with the corresponding time, 
r}c ~ for the potential system which has the same stationary distribution. We 
show that rK/~'~ ~ depends only on the properties of the drift force close to the 
"saddle-point." 

KEY WORDS: Nonpotential drift force; nonlinear Fokker-Planck equa- 
tion; bistable stochastic systems; Kramers time. 

1. INTRODUCTION 

Fluctuation and relaxation effects have been extensively studied in stochas- 
tic systems (in particular those described by a Fokker-Planck equation) 
driven by nonlinear deterministic forces which derive from a "generalized 
potential." These are the systems which obey a "generalized free energy" 
minimization principle. 

However, up to now, very little is known about the corresponding 
properties of nonpotential systems. Graham (0 has studied their stationary 
distribution Pst, and has shown the following: (1) If the stationary distribu- 
tion is invariant with respect to time reversal, one can calculate Pst 
explicitly by means of a single quadrature. This case, in Graham's terminol- 
ogy, is that of "manifest detailed balance." (2) If such is not the case, there 
always exists a "general time-reversal" transformation with respect to which 
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any Fokker-Planck equation has an invariant stationary distribution, pro- 
vided that Pst exists. 

These properties are connected with the fact that, given the Fokker- 
Planck dynamics, a given Pst is not associated with a unique drift force, but 
with an infinite class of them, one of which only derives from a potential. 

Indeed, the normalized stationary distribution 

Pst = N e x p ( -  U/O) (1) 

satisfies the Fokker-Planck equation 

0e  _V.(_Kp + OVP) (2) 
0t 

(we assume that the diffusion tensor 0 is constant, diagonal, and isotropic) 
for all deterministic forces K such that 

K = K o + K  1 

with 

(3) 

= - v v ( 4 a )  

V - K  1 - ( 1 / 0 ) K  1 �9 V U = 0 ( 4 b )  

On the other hand, to our knowledge, only one general result is known 
about the dynamics of the relaxation of nonpotenfial systems towards their 
stationary state, which is due to Risken. (2) He has shown that, among all 
the systems corresponding to a same stationary distribution Pst, the longest 
relaxation time ~- is maximum for the potential system. 

This result is of particular interest for bistable systems with two (or 
more) stable fixed points: in this case, ~- is Kramers time ~'r, which 
characterizes the dynamics of population exchanges between the two basins 
of attraction. When A U = Urea x - Umi n >) 0, q'K is considerably larger than 
any other characteristic time of the system, and thus describes the final 
stage of the relaxation process. 

It would obviously be interesting to go one step further and calculate 
~'K explicitly, at least in simple cases. In this paper, we perform such a 
calculation for weakly nonpotential systems, for which the nonpotential 
part of the drift force, K1,  c a n  be treated as a perturbation. 

This question was also recently addressed by Gardiner. (3) He has 
worked out a method which generalizes to a nonpotential bistable system 
with a known stationary distribution the Landauer-Swanson (4) expression 
of ~-/~ for a multidimensional potential system. His approach involves a 
nontrivial assumption. 

We show at the end of Section 2 that the perturbation approach 
justifies his method, and discuss its physical meaning. 
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2. PERTURBATIVE CALCULATION OF KRAMERS T IME 

We consider a bistable system with a drift force K and a known 
stationary distribution [Eq. (1)]. We assume that the minima of U (the two 
peaks of Pst) are located at r = a, b, and that these minima are connected by 
a saddle point located at r = 0. 

K can be decomposed, according to Eqs. (4), into a potential and a 
nonpotential part, K 0 and K l, and we assume that K 1 is small and can be 
treated perturbatively. 

The characteristic relaxation times of the system, % = ) t - l ,  where 
(-) tn)  are the eigenvalues of the Fokker-Planck operator 

O = V . ( - K  + 0V) (5) 

To each )tn is associated a right-hand eigenfunction, qsn, and a left-hand 
one, '~I'r n : 

O(~n = --)tn(I)n , O + 'I' n = --)tn'I'n (6) 

The zeroth-order Fokker-Planck operator O (o), corresponding to the po- 
tential force K0, becomes Hermitian under the transformation 

0 (o) = exp( U/20 )O (o) exp( - U/20 ) 

This entails that its normalized eigenfunctions have the form (]) 

=  n Oo, %0) =  oo/ o (7) 

where the %'s are the normalized eigenfunctions of 0(~ 

6 (0)q0 n = 0 [  V 2 - -  (V2(~90)/1~90 ](]0 n = - -  )t(0)(~9 n (8 )  

q0 o = (Pst) 1/2= U l /2exp( -  U/20) (9) 

The corresponding eigenvalues, _)t(o), (common to O (~ and 0 (~ 
are real and positive, except for )to (~ = 0, which is associated with the 
stationary state. 

The q5 and 'It n sets are biorthogonal, and we assume that these 
functions form a complete set, i.e., 

~] qs*(r)O,(ro) = 6(r - ro) (10) 
n 

Then, Eq. (6) can be developed into a standard perturbation expansion, 
and one obtains, for the first nonzero eigenvalue, in which we are interested 
here, 

)tl -- l/T/< = )t~o) + )t},) + )t}2) + . . .  (11) 
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where 

~k~ 1) = __ <~,~0) 1 o(1)i~0)> ( 1 2 )  

X} : ) =  E ('t'i~176176176 (13) 
rn:~ 1 ~k} 0) - -  ~k~ 0) 

and the perturbation operator is given by 

0 (1) = - V . K  1 (14) 

Consider a matrix element of 0 (1) . It can be written 

(o(t))mn= <~)[o(1)1r176 = - f a r  w" V'(I~i~0n~00) (15) 
r 

Developing the divergence in Eq. (15), and making use of relation (4b), we 
find 

(O(1))m=fdr (~mI~ ' [ ~ 9 n V ~ 0 0 - -  ~%V~0n] (16a) 
ep ~ ] 

= - (dr%.cpoK 1 �9 V(%/epo ) (16b) 
, 1  

i.e., integrating by parts 

From this relation, 

(O(0),~ = - ( 0 ( 0 ) ,  m (17) 

it follows that X} 1) = 0. Moreover, one checks 
immediately from equations (15) or (16b) that (O (1))m0 = ( O ( | )  )0m = 0 (this 
expresses the fact that (I) o = r 2 is the exact lowest eigenfunction on both O 
and O(~ So, up to terms of third order in KI: 

xl  - x} ~ -- ~ 1<'I'~~176 
m ~ :  xs _ x}o) (18)  

It can be noticed that expression 0 8 )  satisfies Risken's theorem: 
indeed, for m >/2, k (~ - hJ ~ > 0, so that h 1 > X} ~ whatever K 1 satisfying 
condition (4b). 

In order to calculate explicitly expression (18), we need to know the 
X(~ and %'s. As discussed at length in Ref. 5, these can be calculated 
analytically when a generalized (multidimensional) WKB approximation is 
valid. This implies the following conditions, which we assume to be 
satisfied here: 

(1) AU = U(0) - max(U(a),  U(b)) >> 0 (small fluctuations) 
(2) The two minima of U are connected by a well-defined "smooth" 

most probable path (MPEP): that is, the valley of U along the MPEP must 
have a slowly varying width, and a weak curvature and twist. 
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(0 (2 ) )  -- 
ml 

where 

For simplicity, we will restrict ourselves to the case of a system 
described by only two stochastic variables (x, y), with a straight MPEP 
along the x axis, i.e., a = (a, 0), b = (b, 0). These last restrictions can be 
relaxed easily and do not affect the qualitative features of the result. 

We want to calculate 

=fdr q~ .[%VCpo - qOoVq% ] (19) ( O  (2))m I �9 o 1 

It is known from previous work (5) that % and % have (in the only region 
where they have a nonnegligible amplitude, i.e., along the MPEP) the form 

( w(x) '/2) 
qOo,,(r)=fo, l(x)ao(x)D o y[ --~ ] (20) 

where D o is the zeroth-order Weber function [Do(z ) = exp( - z2/4)], w(x) is 
the local transverse curvature of U along the MPEP: 

U(x, y) ~-- u(x) + l yZw(x) (21) 

and 

%(x) = [ w(x)/2~re] 2/4 (22) 

is chosen to normalize the y part of %,2. 
From Eq. (20), it results immediately that 

~Cpo ~cp2 qq -@-y - q%-@-y = 0 

On the other hand, multiplying Eq. (8) by ep0, we obtain 

X} ~ 
V "(q02Vr -- f~OVq02) = T ~PO(~2 (23) 

from which 

f~176176 OqOl~ )k} O) 
--~X -- ~0 "~--X )X=Xo - O s dxdy~O~l (24) 

So, the matrix element [Eq. (19)] reduces to 

I (Ew x,j 2)j X~ o) 
0 far ~epm(r) K2x(r)~ D~ Y - - T  F(x) (25a) 

F(x) = ;foodx' fo(x')fl(x') (25b) 
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Fig. 1. 
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Qualitative shape of f0(x), fl(x) and F(x) for a system with a symmetric stationary 
distribution (symmetric U). 

The functions f0 and fl  have narrow peaks of w i d t h s  ~(O/W) 1/2 in the 
vicinity of the minima of U (x = a, b), and are exponentially smaller 
everywhere else (5'6) (see Fig. 1). Therefore, F(x) is negligible for x < a and 
x > b, and has a quasiconstant plateau between these two points. 

Developing Eq. (9) around the minima of U, one gets for ~o the 
following approximate expression: 

+ exp 20 \ (26) 

with 

" --02U r = a , b  Ua, b = ~ X  2 0 2 U  r=a,b wo,b = ay--- 5- 
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Analogously(3,4) : 

( [ Ua" jl/2) ( [ "t J 1/2) u0 (27) f,(x)= LD o (x-a)  -~- + MD o (x-b)  -~ 

f0 and fj  must be normalized and orthogonal, which determines N, L, M. 
One then finds, for the plateau value C of F(x), 

C ~ fo(x)fl(X)dx 

= exp 20 

k I- 

X 1 exp + exp (28) (wau2),/2 0 (wbu;,)l/2 0 

The eigenfunctions cp,~ (m t> 2) which appear in Eq. (25a) separate into 
three classes4: the first one, { q0 m ), corresponds to states localized, along x, 
in a region of order (O/u") 1/2 around point a, the second one, {rpmb}, is 
correspondingly restricted to the (b) region, while the third class, {~mo}, is 
localized in a region Ax~(O/lu6'l) 1/2 around the saddle point r = 0 of U. 

On the other hand, [%(r)] -~ cc exp(U/20) is strongly peaked, along 
the MPEP, in the x ~ 0 region, where 

[ f 0 ( x ) ] - I  N_l/2[ Wo )l/4ex p _ _ ~  ]Do(/f ~ ]1/2) 
2~r0 (29) 

and is very small around a and b, so that the contribution of { cp,,o }, { %nb } 
to 7~2) is exponentially small--and thus negligible---with respect to that of 
the CPm0'S, which, for r ---- 0, have the form (s) 

~m0(r) __- c0) r �9 . ,p(  ) 

___( lu~'lw____~o ) 1/4 Wo 
4qr202 (p[n,)_,/2D,(y [ -ff ],/2)Dp(x[ ~ ],/2) (30) 

This expression for the {~mo}'S is obtained from Eq. (8) by linearizing 
the potential force K o around r = 0. In order to be consistent with this 

4 Strictly speaking, this is true only for eigenvalues X~ (~ << 0- I(AU/a)2, which give the only 
important contribution to the sum (18). 
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approximation, we must also linearize Klx in the same region. With 

Kox ~ lu;'lx 
(31) 

K o y  - -  - w o y  

we obtain, using condition (4b) 

Klx -~ 3'y 

lu;'l x (32) 
Kly ~-- y Wo 

where -/is a (small) free parameter. So 

( O('))mo,l~ ~}~ exp[ ~o) ]N-'/z 
X C, [ lu'otwo)l/4 1 1/2~ [ [ jaxk 4-~ (p,)l/2D~ lu@t ] )De(x[ ]u--ji ]1/2) 

wo o+[wo w0 
X 

It is seen immediately, with the help of the properties of the D.'s, that 
the only nonzero matrix element corresponds to p = 0; n = 1. 

Finally, using the expression for the eigenvalues of the potential 
system (5) 5 

x (~ = w0 + lu;'l (34) 0,1 

__ 1 ('U;" ,1/2 [ U(o) ] 

we find: 

~,1 - X} ~ ~,2 
~.}o ) - Wo([U;,[ + w~ ) (36) 

This can also be expressed in terms of the Kramers times, ~'K and ~.o of 
the nonpotential and potential systems, as 

~r K ~ ~-(2 ) 1 - Wo(lU~ q + w~ ) (37) 

5 Note that the definition of the ?~'s used here differs from that of Ref. 5 by a factor 0. 



Kramers Time in Weakly NonpotenUal Systems 765 

This defines a posteriori the range of validity of our perturbation 
approximation as 

y <<[wo(luG'l + Wo)] '/= 

that is, in the linear region around the saddle point, [KI[ << ]Ko]. 
Therefore, we have shown that, to second order in perturbation, the 

variation of Kramers time due to the nonpotential part of the drift depends 
only on the characteristics of the force K 1 in the saddle-point region and is 
independent of the details of its variations in the rest of the r space. 

An analysis of the next perturbation orders parallel to the above one 
shows that this qualitative result persists up to rather high order in ~,. 

This simple qualitative result appears quite natural physically; indeed, 
Kramers dynamics can be understood in two ways: 

(1) In the one used here, it is viewed as describing relaxation towards 
the stationary state. 

(2) One can also, following Kramers, (v) view it as describing the 
current induced by an imposed chemical potential difference between the 
two locally stable states of the system. In this picture [if for example well 
(b) is assumed empty] one can write 

1 _ Ja-~b (38) 
r K na 

[where n a is the population of well (a)]. For A U >> 0, Ja-~b is small, so that 
n a is practically determined by the stationary distribution, common to the 
(Ko) and (K 0 + K 0 systems. So, the difference between r K and r~ ~ is only 
due to the difference between the J~.b in the two systems, which is clearly 
determined by the properties of the saddle-point region. 

One is left with the question of understanding what is the physical 
meaning of Risken's theorem, i.e., why does the introduction of a nonpo- 
tential part in the drift force always result in a decrease of rK? We believe 
that a hint about this question can be found in the following remark: the 
population na in Eq. (38) is determined by Pst, i.e., by U. Therefore, for  
populations, side (a) is defined by the principal axes of U at the saddle 
point. With the geometry we chose here for U, this "stationary (a) side" 
corresponds to x < 0. 

On the other hand, in the absence of fluctuations, the dividing line for 
trajectories in the r ~ 0 region is fixed by the principal axes of the 
linearized total force, K 0 + K 1 . Using Eqs. (31) and (32), it is seen that the 
"dynamic dividing line" of the deterministic trajectories is, for Y v ~ 0, at an 
angle fl with the "population dividing line" (fl-----y/([u~'[ + w0) ). 
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Fig. 2. 

Y u 

Qualitative shape of the deterministic trajectories near the saddle-point 0. 0y is the 
stationary dividing line. 0 Y is the dynamic dividing line. 

In the potential system, where the two lines coincide, all the particles 
which cross the dividing line have to do so with the help of the fluctuations. 
In the nonpotential system, there always is a region of the stationary (a) 
side from which particles are driven across the stationary dividing line by 
the deterministic motion (Fig. 2). 6 

This cannot be compensated by the deterministic motion towards (a) 
issuing from region (II) of Fig. 2, since, due to the chemical potential 
difference, the population in this region is smaller than that of region (I). 

This picture thus seems to account, at least qualitatively, for Risken's 
effect. 

Finally, it is interesting to compare our result with what Gardiner's 
method ~3) would predict in the same case. He characterizesthe nonpoten- 
tial part of the force by means of an antisymmetric tensor A (x, y), related 
to our K 1 by 

1 (VPst) " ff (39) 

and introduces a set of planes (S(O)  chosen so that, in each S, P~t has a 
unique maximum, at position u(~). Writing the equation of these planes as 

/~ (~)x + y = ~ (40) 

6 Of course, in order to calculate r K explicitly on this basis, one should take into account the 
fact that, in the saddle-point region, the fluctuation effect is important and couples with the 
deterministic one. 
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the orientation/~(~) of S(~) is fixed by the condition 

(41) 

where ~(~) is the unit vector normal to S(~). 
One easily calculates explicitly u(~) and/~(~) in the quadratic region 

r ~ 0, and, following Gardiner, (3'8) we find that the expression thus ob- 
tained for the Kramers time in the small- 7 limit is identical with our 
perturbation result [Eq. (37)]. 

This can be considered as a check of the validity of Gardiner's 
assumptions. Moreover, for r = 0 (4 -- 0), one finds # = y/(lu~'[ + w0) = fl 
that is, the set of planes that he introduces precisely follow the principal 
axis of the force field which is transverse to the dynamic most probable 
path, and S(~ = O) coincides with the "dynamic dividing line." 
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